
Machine Learning Models for Heart Disease Prediction∗

Xin Xiang, Michael Pacocha, Matthew Barroso†

(Dated: December 11, 2021)

Over 17.9 million people every year die of heart disease making it the worlds number one killer.
Many preventative measures can be administered when properly diagnosed. In this paper, we take
a look at a using machine learning methods to determine if a particular patient is likely to have
heart disease based on a few variables including age, cholesterol, and blood pressure.

I. INTRODUCTION

Machine learning is used to make predictions on par-
ticular outcomes based on previous data.

We chose to try and classify whether or not a patient
would have heart disease based on various parameters.
We use the data from [1]. The data has various features,
all of which are shown in fig. 1. This data also includes
whether or not the patient had heart disease.

We use different machine learning methods to try and
classify our data in order to see which method is best. We
look at decision trees, naive Bayes, and neural networks.
For decision trees, We build two base tree classifiers using
Information gain and Gini Index as splitting criterion and
two boosted classifiers using Bootstrap aggregating algo-
rithm and adaptive boosting algorithm. For naive Bayes,
we calculate prior probabilities and likelihoods from our
data, and use Bayes theorem to determine the most likely
outcome.

[mg/dl]

FIG. 1. The overview of our data and the explanations for
each feature

∗ CS 4641 - Machine Learning - Final Paper Project. Code and
all the files can be access here: The link to our code
† Georgia Institute of Technology.

II. THEORETICAL CONSIDERATIONS

A. Decision Trees, Bagging and Boosting

In this section, we show the algorithms of three dif-
ferent decision trees. The first one is the basic decision
tree classifier using either Gini Impurity or Information
Gain as the splitting criterion. The other two are more
advanced classifiers using Bootstrap Aggregation Algo-
rithm and Adaptive Boosting Algorithm. The latter two
are forms of ensemble learning.

1. Gini Impurity and Information Gain

Gini impurity, or Gini index, measures the probability
of misclassifying a variable when it is randomly chosen.
If all the elements belong to a single class, then it can
be called pure. The degree of Gini index varies between
0 and 1, where, 0 denotes that all elements belong to a
certain class (the node is pure), and 1 denotes that the
elements are randomly distributed across various classes
(the node is impure). The Gini index can be calculated
by [2]:

Gi =

C∑
c=1

π̂ic(1− π̂ic) = 1−
∑
c

π̂2
ic (1)

, where π̂i is the probability a random entry in the leaf
belongs to class c. While building the decision tree, we
would prefer choosing the feature with the least Gini in-
dex to spilt on. Alternatively, the entropy can also mea-
sure the cost or deviance of the node:

H(Y) = −
k∑
i=1

π̂(yi)logπ̂(yi) (2)

Information gain computes the difference between en-
tropy before split and average entropy after split of the
data set based on given attribute values. Information
gain is the decrease in entropy:

IG(X) = H(Y)−H(Y | X) (3)

, where H(Y | X) is the conditional entropy given by:

H(Y | X) = −
v∑
j=1

π̂(xj)

k∑
i=1

π̂(yi | xi)logπ̂(yi | xi) (4)

https://drive.google.com/drive/folders/1rCRLc1b2w0SdO6xPf3DnBC68ZPSj8Z3-?usp=sharing

2

The attribute X with the highest information gain,
IG(X), is chosen as the splitting attribute at the node.
The tree models are easy to interpret and can easily han-
dle mixed discrete and continuous inputs. However, trees
are unstable. Even small changes to the input data can
have large effects on the structure of the tree. Also, they
are very likely to over-fit with the training data due to
the greedy nature of the tree construction algorithm. In
other words, decision trees are a high variance estima-
tor. A way to reduce variance is to average multiple tree
models. This is called ensemble learning[2]. We will in-
troduce two ensemble learning algorithm called Bagging
and AdaBoost in the following two subsection.

2. Bootstrap Aggregation Algorithm (Bagging)

Bootstrap aggregating is a simple form of ensemble
learning. A number of base classifiers (e.g., the base deci-
sion trees introduced in the previous section) are trained
on random subsets of the original data set and their in-
dividual predictions are aggregated to form a final pre-
diction. This final bootstrap aggregating classifier is an
ensemble meta-estimator that can be used as a efficient
way to reduce the variance of the base estimator. It can
prevents the model from relying too much on individual
training example. Bagging algorithms draw the subdata
set with replacement [3], so a given example may appear
multiple times, until we have a total of N examples per
model, where N is the size of the original training set.
Then we apply the decision tree algorithm to the sample
and store the resulting classifier. The final estimator will
return the class for each instance that is predicted most
often for all the base estimators.

3. Adaptive Boosting Algorithm (AdaBoost)

The Adaptive Boosting is another form of ensemble
learning. A classifier (e.g., a base decision tree) is built
first for the unweighted original training sample. If there
is a misclassified data point, the weight of that train-
ing data point is increased (boosted). Then a second
classifier is built using the data set with new weights.
Many classifiers are built sequentially using this repeat-
edly procedure. A final classifier is build by the linear
combination of all the classifiers learned previously. The
algorithm known as AdaBoost-SAMME [4] is used in this
project.

B. Naive Bayes Classifier

The idea for Naive Bayes is to take a probabilistic ap-
proach to determine a decision. We start from Bayes
theorem, given by

P (Y = yi|X1, ..., Xn) =
P (Y = yi)P (X1, ..., Xn)

P (X1, ...Xn)
(5)

Where yi are the possible outcomes, Xn are the features,
each of which can take on different values. In qualitative
terms, this equation is saying that the probability of a
particular outcome happening based on values of some
features that occurred is equal to the probability of that
outcome happening (called the prior) multiplied by the
probability of those features happening when that out-
come happened (likelihood) divided by the probability of
those features happening (evidence). Given some previ-
ous data, the prior and evidence are easy to calculate.
For each outcome yi, count each time that outcome hap-
pened and divide by the size of your data. The same
goes for some feature Xi. It gets more complicated for
likelihood, because certain features may be conditionally
dependant.

We wish to find an expression for P (Y =
yi|X1, ..., Xn). The Naive part of Naive Bayes comes from
the assumption that all variables Xn are conditionally in-
dependent, i.e.

P (X1, ..., Xn|Y) =
∏
i

P (Xi) (6)

Therefore, our expression for our classifier becomes

P (Y = yi|X1, ..., Xn) =
P (Y = yi)

∏
i P (Xi)

P (X1, ...Xn)

Notice, when trying to classify some data, the denomi-
nator is the same for each guess at an outcome, thus can
be ignored. Therefore we have

P (Y = yi|X1, ..., Xn) ∝ P (Y = yi)
∏
i

P (Xi) (7)

Now with this assumption, to calculate the likelihood of
some event, we take previous data and count each time
a feature takes a value for a particular yi and divide that
by the number of times that yi occurred, i.e.

P (Xi = x|Y = yi) =
Count(Xi = x, Y = yi)∑
Count(Xi = x′, Y = yi)

(8)

Finally, to make a prediction on the outcome, we take
the argmax of P (Y = yi|X), so if a particular set of like-
lihoods for a given yi multiplied by the prior probability
of that yi has the highest value, we choose that particular
yi to be the decision.

This assumption that the variables are conditionally
independent is generally not true , especially in the case
of predicting heart disease. And yet, Naive Bayes is often
the most used classifier. It sometimes still performs well
on data that is still conditionally dependent. Therefore,
we will analyze it as a method of classifying our data.

1. Continuous Data and Zero Frequency Problem

Calculating likelihoods is easy for data that takes dis-
crete values, like gender or whether or not coin lands on

3

FIG. 2. Example of a multi layer neural network with at least
two hidden layers

heads. But for variables that take on continuous values,
like heart rate, it is very possible to not have examples
for particular values, resulting in a likelihood of zero.

Instead of calculating likelihoods directly from the
data, we can assume a probability distribution based on
the data [5]. The most common distribution is a nor-
mal/Gaussian distribution (hence the name), which takes
on the form

p(x) =
1√

2πσ2
e

1
2 (
x−µ
σ)2 (9)

The parameters of this Gaussian can be chosen from a
given set of training data. µ is given by average of the
data and σ is the standard deviation.

This is a probability distribution, the probability of an
event occurring within a range x+ δx is given by∫ δx

x

p(z)dz (10)

We can use this probability for P (Xi|Y) for our result.

C. Neural Networks

The purpose of using a neural network is to be able to
extend linear models to represent nonlinear models. This
is achieved by using nonlinear functions to transform the
decision space. The general architecture for a neural net-
work can be seen in Fig. 2. In this example, there is the
input vector ~x, first layer vector vector ~y, second layer

vector ~z, and weight vectors vector ~W and ~V .
From the input vector, we can calculate the vectors for

the other two layers by applying a linear function. The

first layer becomes ~y = ~W~x+ b and the second layer be-

come ~z = ~V ~y+c = ~V (~W~x+b)+c. However, this current
model does not allow for the model to represent nonlinear
functions as it is comprised solely of linear operations. To
mend this, a nonlinear function, g, is applied to each layer

resulting in ~y = g(~W~x+ b) and ~z = g(~V (g(~W~x+ b)) + c).
The process of calculating the values each layer is called
the forward pass.

The choice of the nonlinear function is entirely depen-
dent on the implementation of the algorithm and the ge-
ometry of the true decision boundary. In theory, if a
function that is similar to the true decision boundary is
used for the nonlinear function, then the results of the
neural network will be better or converge quicker. In
most cases, we wish to learn this decision boundary, so it
is common to use some standard ones. A few of these are
the: Sigmoid function - σ = 1

1+e−x , Rectified Linear Unit

(ReLU) - max(0, x), and the hyperbolic tangent function
- tanhx.

While the nonlinear functions allow for nonlinear de-
cision boundaries, the weight vectors are what are used
to learn from a model. To update these weights, we ap-
ply the back propagation algorithm which is essentially
just gradient descent. A forward pass is done to calcu-
late each node value Nk. At the end of the pass, we
calculate δo = No(1 − No)(p − No) each output unit
o with output p. For each hidden unit h, we calculate
δh = Nh(1−Nh)Σkwh,kδk. Finally, we can update these
weights using wi,j = wi,j + ηδjxi,j.

III. METHODS

A. Data Processing

The data with categorical features in the original data
set (Sex, ChestPainType, RestingECG, ExerciseAngina,
ST Slope) are converted to numerical feature using Or-
dinalEncoder() from sk-Learn. By reading the data file,
we noticed that there is a large amount of zero inputs for
Cholesterol and one zero input for RestingBP. Since a
person’s Cholesterol level and resting blood pressure are
impossible to be zero, we assume that these zero inputs
are collected incorrectly. For one set of data, we include
these points, and for another we exclude the data with
zero inputs for Cholesterol and RestingBP. For the third
data set, a linear regression from sk-Learn was used to
predict the missing cholesterol values using the other data
given by the users. This method was found to be within
20.9% of the true value. This method also only mini-
mally changed the distribution of the data, changing the
average by .484%. The cholesterol values’ mean, median,
and mode can be see in Fig. I for the three data sets. We
use 80% of our data as training data and 20% as testing
data for decision trees and Naive Bayes Classifier. For
Neural Network, the data was split 70% train, 20% test,
and 10% dev set.

B. Decision Trees

All the decision trees classifiers are built using sk-learn.

4

Mean Median Mode
Dataset #1 199.02 223.00 0
Dataset #2 244.63 237.00 254
Dataset #3 243.45 236.00 225

TABLE I. This table shows the cholesterol values’ mean, me-
dian, and mode for each of the three data sets. Data set #1
is with all data, Data set #2 is with the zero cholesterol val-
ues removed and Data set #3 is with the predicted values for
cholesterol.

1. The Baseline Decision Tree

We built two trees using Gini Index and Information
Gains as splitting criterion. The GridSearchCV method
in sk-learn is used to do the hyperparameters tuning
for the minimum number of leaves and the maximum
depths of the tree. We search for the best combina-
tion of the two hyperparameters in the list of values of
[2,4,8,16,24,32,40,48,56,64,72] and [4,5,6,7,8,9,10,11,12]
for the minimum number of leaves and the maximum
depths of the tree respectively.

2. Bagging Classifier

We use the Gini Index decision trees as base estimators
for the Bagging. We choose the maximum samples that
are drawn from the original data set to be equaled to
250. The same method is used to do the hyperparameters
turning for the maximum depth and minimum leaves of
base estimators, the number of estimators. The values
lists for these four hyperparameters are [4,5,6,7,8,9,10],
[1,2,4,8,16,24], [500, 1000, 1500] respectively.

3. AdaBoost Classifier

Similarly, we use the Gini Index decision trees as
base estimators for the AdaBoost Classifier. We turn
the hyperparameters for the the maximum depth and
minimum leaves of base estimators, the number of
estimators, and the learning rate. The values lists
for these four hyperparameters are [4,5,6,7,8,9,10,11,12],
[2,4,8,16,24,32,40,48,56,64,72], [1,2,3,4,5,6,7,8,9], and
[0.01, 0.04, 0.08, 0.12, 0.16, 0.20] respectively.

All the hyperparameters may be manually turned.
More details are discussed in the Results section.

C. Naive Bayes Classifier

To analyze our data, we will use a few different meth-
ods since each feature has a different distribution. First,
calculating a prior probability is easy, we count each in-
stance someone did or did not have heart disease and
divide it by the length of the data. Since there are only

FIG. 3. Distribution of age

two outcomes, we simply make 2 variables, priorPClass
and priorNClass for the prior probabilities.

The more complicated part if calculating the likeli-
hood. For each feature class, we need to count each
possibility for that class when the outcome was a partic-
ular value. For instance, if we had 5 patients, and their
sexes were [M,M,F,M,F], and the outcome for each was
[1,0,0,1,1], we would have 4 likelihoods P (X = M |Y =
1) = 2/3,P (X = F |Y = 1) = 1/3, P (X = M |Y = 0) =
1/2, P (X = F |Y = 0) = 1/2. This is simple for features
that take on discrete values, we simply count and divide
by the times that an outcome happened. For our data
there were 6 features that were simple, namely ”Sex”,
”ChestPainType”, ”FastingBS”, ”RestingECG”, ”Exer-
ciseAngina”, ”ST Slope”. The rest of the data we have
to do something different.

For our harder, continuous data, we have to decide
what sort of distribution to fit to our data. Most of
the continuous data looks like a normal distribution, as
shown in fig. 3.

As discussed in sec. II B 1, continuous data poses a
problem that we might not see an example for every pos-
sible value, and even if we do it might not be very repre-
sentative of its true probability. In our data, heart rate
could take on values of 60-180, but it is not very likely we
see every single value in our training set. So instead, we
fit a Gaussian to the data and use that to find probabili-
ties. This safely avoids the zero frequency problem. Our
data has 4 features that take on continuous, Gaussian
distributions, namely ”Age”, ”MaxHR”, ”RestingBP”,
”Cholesterol”.

Cholesterol in particular has a weird feature that there
is a very large peak at zero and then looks Gaussian
after, we take two strategies to analyze this, the first is
to simply remove the zeros and just use the Gaussian,
the other is to include the zeros in a separate, discrete
likelihood, and include the Gaussian as well. A slight
caveat to this strategy is that the sum of likelihoods for
a particular P (Xi = x|Y = yi) has to sum to one for
each x. So we divide the Gaussian for cholesterol by

5

1− P (Cholesterol = 0|Y = yi). We do this because our
normal Gaussians are defined by∫ ∞

−∞
p(x)dx = 1 (11)

So in order for the total likelihood to add up to one, we
must divide the Gaussian by the contribution of the 0
likelihood.

There is one last feature that does not look nicely
Gaussian, namely ”Oldpeak”. So instead of fitting a nice
function, we simply separate the data into even bins.

Finally, after calculating all the likelihoods, we put
them all into a dictionary to use for later. We then loop
over the test data, referencing the dictionary for the like-
lihood of each feature, multiply for each likelihood and
then multiply the probability of the outcome. We put
the result for each example in a vector and dot this with
the actual outcome to find our accuracy.

D. Neural Network

The neural network used for this project was built us-
ing PyTorch and optimized with Optuna. In this part,
the train set was used to train the neural network, the
dev set was used to report accuracy of the epochs and to
tune with Optuna, and the test set was used to report
the accuracy of the trained neural network.

For the neural net, PyTorch was used due to our fa-
miliarity with the package from the course. Two main
combinations of layers were used. One uses a dropout
layer due to its use in preventing over fitting.

For the first combination: 1. Input layer has the linear
transformation y = xAT +b applied resulting in a hidden
layer 2. The ReLU nonlinearity is applied 3. If there
is another layer, repeat from 1. If not, another linear
transformation is applied resulting in an output layer 4.
The log softmax is applied to turn the output layer into
a probability distribution.

For the second combination: 1. Input layer has the
linear transformation y = xAT + b applied resulting in
a hidden layer 2. The ReLU nonlinearity is applied 3.
A dropout layer is applied 4. If there is another layer,
repeat from 1. If not, another linear transformation is
applied resulting in an output layer 5. The log softmax
is applied to turn the output layer into a probability dis-
tribution.

The tuning was done with Optuna over RayTune, Hy-
perOpt, Keras Tuner, and SciKit due to ease of use and
built in trial pruning. Since Optuna is known for its effi-
ciency and ability to prune runs that are not promising,
we were able to tune many parameters. For each of the
three data sets, we let Optuna run 400 trials. Of these
400 trials, 200 included the dropout layer and the other
200 excluded it. For each trial, Optuna was allowed to
optimize the number of layer sets, the number of nodes
in each hidden layer, (if there was one) the probability

for the dropout layer, the learning rate of the Adam op-
timizer, and the number of epochs.

Once the best parameters were calculated by Optuna,
the values were used in the neural network. The networks
were then tested 50 times each with the data randomized
each time.

IV. RESULTS

A. Decision Trees

1. The Baseline Decision Tree

The best tree we found for the baseline decision tree for
Dataset #1 has the maximum depths of 5 and minimum
leaves of 16. The structure of the tree using information
gains as splitting criterion is showed in figure 4. The first
three important features are ST Slope, ChestPainType,
and Cholesterol. The split on Cholesterol is 42.5. Ac-
cording to the article [6], the healthy level for Cholesterol
should below 200mg/dL. Apparently the Dataset #1 ’s
average inputs for Cholesterol is lower than normal. This
can be due to the wrong zero inputs. For the Dataset
#2 and #3, the first three important features become
’ST Slope’, ’ChestPainType’, and ’Sex’. The splitting on
Cholesterol is increased to 266 and 232.5 for set #2 and
#3 respectively. Thus, we can confirm that the data of
zero values for Cholesterol are collected incorrectly. And
the prediction for the Cholesterol values by the linear re-
gression is performing very well. The accuracy for all the
test sets are 0.83± 0.3, and 0.86± 0.1 for all the training
set.

2. Bagging Classifier and AdaBoost Classifier

For the dataset #1, The best hyperparameters sets of
the bagging classifier we found for the maximum depth
and minimum leaves of base estimators, and the number
of estimators are 6, 1, 1500 respectively. For dataset #2
and #3, the best hyperparameters sets are 4, 4, 1500; and
7, 2, 500. The accuracy are around 0.90. However, for
the AdaBoost, we get an accuracy of 1.0 for the train-
ing set of the data #2 and 0.77 for testing set. This
indicates extremely bad over-fitting happens. The table
5 summarizes the accuracy for all the decision tree al-
gorithm we have done for the original hyperparameters
setup. To avoid the over-fitting, we change the base esti-
mator for the AdaBoost to has smaller depths and leaves
(weaker base trees). We found that when the maximum
depth equals to 3 and minimum leaves equals to 10, the
AdaBoost Classifier performs better.

6

FIG. 4. The Baseline Decision Tree

Dataset #1

Dataset #2

Dataset #3

(weaker base)

FIG. 5. The accuracy for decision trees

B. Naive Bayes Classifier

Our accuracy on the test set was 78.3%. Considering
the assumption of conditional independence, this is a de-
cent result. Despite the fact that these features are not
at all independent from one another, our result was still
decently accurate. Using the different data sets #2 and
#3 yielded little to no difference in accuracy.

C. Neural Networks

Out of all of the tests ran, the best accuracy was 89.6%
given by the neural network without a dropout layer and
with the predicted cholesterol levels. The best for the
neural network with the dropout layer was with the un-

modified data at 87.4%.

Since we are predicting heart disease, we really want to
avoid giving false negatives. If implemented in real life,
a false positives would not harm anyone. It would likely
result in someone being examined further by a doctor. A
false negative, however, would mean someone who has a
problem would not get the attention they need. Because
of this, we decided to do further analysis on how accurate
the positive and negative readings were.

Yet again the better decider was the neural net with-
out the dropout layer and on the predicted cholesterol
at 89.1% overall accuracy, 91.7% accuracy on predicting
correctly those who do have heart disease, and 85.1% on
those who don’t. The best for the neural net with the
dropout layer was on the no cholesterol at 81.1% overall
accuracy, 91.8% accuracy on predicting correctly those
who do have heart disease, and 70.7% on those who don’t.

A broader analysis of the many tests done on each neu-
ral network revealed that the inclusion of the dropout
layer did not seem to improve accuracy. Surprisingly,
the neural networks with the dropout layers seemed to
be more inclined to over fitting on all data sets. There
were some interesting cases in the dropout layer tests
however. There were some that had +95% accuracy in
correctly identifying those with heart disease, but 50-
60% in correctly identifying those without heart disease.
While it seems to do the important job of identifying
those with a problem, it is also likely to increase doctor
work load through false positives. On the other hand,
the neural networks without the drop out layer, they all
seemed to be fairly accurate and had pretty good accu-
racy on both the positive and negative cases, 85%.

7

V. CONCLUSION

All of our methods did a satisfactory job at properly
classifying those who might have heart disease. The best
of which being the AdaBoost Classifier for dataset #1
with the accuracy of 91% for the testing set.

From the accuracy table of decision trees, we found
that the Bagging algorithm has the most stable results.
Although the accuracy of training is always larger than
that of the testing, the improvement could have been
done. The Bagging’s base model only select a portion

of the original data. A large amount of the training
data (around 30%) are not used by the given base model.
The cross validation can be done for these out-of-bag in-
stances to improve the performance of the Bagging.

In the analysis of the neural network data, we found
that there were networks that had very accurate posi-
tive predictions and many false negatives. An interesting
continuation of this project might involve a follow up
study that sees if any of the negative patients later de-
veloped heart disease. That could then be compared to
the cases the were previously false positives. This would
mean that the particular neural network might also be
good at predicting at risk individuals.

[1] Fedesoriano, Heart Failure Prediction Dataset (2021).
[2] K. P. Murphy, Probabilistic machine learning: an intro-

duction (The MIT Press, 2022).
[3] L. Breiman, Bagging predictors, Machine Learning 24,

123–140 (1996).
[4] T. Hastie, S. Rosset, J. Zhu, and H. Zou, Multi-class ad-

aboost, Statistics and Its Interface 2, 349–360 (2009).
[5] T. Gupta, Continuous Data and Zero Frequency Problem

in Naive Bayes Classifier (2020).
[6] Cholesterol: The good and the bad (2021).
[7] C. Moffitt, Guide to Encoding Categorical Values in

Python (2017).

https://www.kaggle.com/fedesoriano/heart-failure-prediction
https://www.kaggle.com/fedesoriano/heart-failure-prediction
https://doi.org/10.1007/bf00058655
https://doi.org/10.1007/bf00058655
https://doi.org/10.4310/sii.2009.v2.n3.a8
https://towardsdatascience.com/continuous-data-and-zero-frequency-problem-in-naive-bayes-classifier-7784f4066b51
https://towardsdatascience.com/continuous-data-and-zero-frequency-problem-in-naive-bayes-classifier-7784f4066b51
https://towardsdatascience.com/continuous-data-and-zero-frequency-problem-in-naive-bayes-classifier-7784f4066b51
https://towardsdatascience.com/continuous-data-and-zero-frequency-problem-in-naive-bayes-classifier-7784f4066b51
https://arcmonroe.org/cholesterol-health-wellness/?gclid=CjwKCAiAksyNBhAPEiwAlDBeLKaUuo3KaByvYqeDcxvOqj2plCJnGx5rbRMfy-KBz9S_jaZLAkhygxoCWNQQAvD_BwE
https://pbpython.com/categorical-encoding.html
https://pbpython.com/categorical-encoding.html
https://pbpython.com/categorical-encoding.html
https://pbpython.com/categorical-encoding.html

	Machine Learning Models for Heart Disease Prediction
	Abstract
	introduction
	Theoretical Considerations
	Decision Trees, Bagging and Boosting
	Gini Impurity and Information Gain
	Bootstrap Aggregation Algorithm (Bagging)
	Adaptive Boosting Algorithm (AdaBoost)

	Naive Bayes Classifier
	Continuous Data and Zero Frequency Problem

	Neural Networks

	Methods
	Data Processing
	Decision Trees
	The Baseline Decision Tree
	Bagging Classifier
	AdaBoost Classifier

	Naive Bayes Classifier
	Neural Network

	Results
	Decision Trees
	The Baseline Decision Tree
	Bagging Classifier and AdaBoost Classifier

	Naive Bayes Classifier
	Neural Networks

	Conclusion
	References

