Center for Relativistic Astrophysics

Cont Georgia

Including a Warm Corona within the Inner Accretion Disk of Active Galactic Nuclei

Xin Xiang, David R. Ballantyne

Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology

Model Description

A. A radially dependent Warm Corona model with reflection

- We consider the emission/reflection spectrum produced by a constant density disk atmosphere with Thomson depth τ_T at radius R. The disk dissipates a total flux D(R) (Shakura & Sunyaev 1973). A fraction h_f of D(R) is assumed to be uniformly distributed in the warm corona.
- At each R, the density of the warm corona is given by $n_H/1000$, where n_H is calculated from the radiation pressure dominated solution of Svensson

Results

Examples of Spectra and Physical Effects

The solid curves in Figure 3 are the emission and reflection spectra from the 2D warm corona model assuming the black hole mass $M = 5 \times 10^7 M_{\odot}$, spin a = 0.99, and Eddington ratio = 0.01. We focus on the region of 0.3 – 30 keV in the graph.

Contact

Name: Xin Xiang (Cindy) Email: xxiang37@gatech.edu

Abstract

Warm coronae, Comptonizing regions of warm (temperature ~ 1keV), and optically thick (Thomson depth ~ 10 -**20)** gas, at the surfaces of accretion disks in active galactic nuclei (AGNs), have been proposed to explain the origin of the soft X-ray excess commonly observed in the X-ray spectra of AGNs. We calculate the Xray emission from an irradiated constant density accretion disk atmosphere that includes heating from a warm corona, as well as illumination from an external X-ray power-law, and a blackbody emission from the dissipation in the accretion disk. The model accounts for the radial dependence of disk ionization, including the effects of light-bending on the illuminating X-rays. The final spectra are produced by integrating the local reflection/emission spectrum from approximately 2 to 400 gravitational radii. We demonstrate how the soft excess in AGN X-ray spectra depends on the warm corona heating fraction and optical depth, and the strength of the X-ray illumination. The model will be publicly released in 2022 for use in fitting AGN spectra.

& Zdziarski (1994).

- The surface of the warm corona is illuminated by the hot corona, which is located directly above the black hole's rotational axis with a height h. The spectrum from the hot corona is modeled as a cut-off power-law with photon index Γ . A fraction f_X of D(R) within 10 r_g is released in the hot corona and irradiates the disk, where r_g is the gravitational radius of the black hole. The X-ray flux from the hot corona is calculated using the equation in Ballantyne (2017) that accounts for light-bending effects.
- The bottom of the warm corona is heated by the blackbody with the remaining energy of $(1 f_X h_f)D(R)$.
- We use the code of Ballantyne et al. (2002) to calculate the reflection and emission spectrum from the surface of the atmosphere at radius *R*.
- The emission spectrum from R to $R + \Delta R$ is relativistically blurred using the relconv_lp model (Dauser et al. 2013)

(Panel.1) Varying h_f : The spectrum for the four different values of h_f with

B. The Final Model: 2-D integration

The final model integrates 20 individual spectrum from $R_{in} = R_{ISCO} + 0.5r_g$ to R_{warm} , the radius at the disk where the ionization parameter $\xi = 5$, plus the extension region which is dominated by neutral reflection from R_{warm} to $R_{out} \sim 400r_g$. Each individual spectra in the warm corona region and the extension region has width of $\Delta R = (R_{warm} - R_{in}) / 20$ and $\Delta R = 5r_g$ respectively.

 $h = 20, f_X = 0.1, \text{ and } \tau_T = 20.$

 The increase of h_f enhances the Compton scattering throughout the layer and raises the ionization state of models in the gas. The soft excess is stronger and more ionized.

(Panel.2) Varying τ_T : The spectrum for the three different values of τ_T with $f_X = 0.1$, $h_f = 0.50$, and h = 20.

• Smaller τ_T increases the heating rate everywhere throughout the warm corona because the heat is spread into a smaller region. A larger h_f would be needed for a thicker layer (i.e., a bigger τ_T) to increase the Comptonization rates.

(Panel.3) Varying f_X : The spectrum for the three different values of f_X with $h_f = 0.50$, h = 20, and $\tau_T = 20$.

An increasing of f_X heats and ionizes the surface of the disk. But its importance on creating the the soft excess is less than h_f and τ_T .

(Panel.4) Varying h: The spectrum for the two different values of h with $h_f = 0.50, f_X = 0.1$, and $\tau_T = 20$.

 Higher lamppost height reduces the relativistic blurring effect. More heat from the hot corona illuminates the disk's outer radii, where the gas is less ionized, hence, a stronger Fe Kα line. Lower lamppost height leads to a

more ionized inner disk, but weaker reflection from the outer disk.

References

Ballantyne D. R., Ross R. R., Fabian A. C., 2002, MNRAS, 336, 867 Ballantyne D. R., 2017, MNRAS, 472, L60

Dauser T., Garcia J., Wilms J., Böck, M., Brenneman L. W., Falanga M., Fukumura K., & Reynolds C. S., 2013, MNRAS, 430, 1694

Shakura N. I., Sunyaev R. A., 1973, A&A, 500, 33

Svensson R., Zdziarski A. A., 1994, ApJ, 436, 599