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1. Introduction

A star is a spherical astronomical object consisting of luminous plasma held by its own gravity [6].
The Sun is the nearest star to the Earth. Many bright stars can be seen on the night sky as fixed
points of light as they are significantly far away from the Earth. The nearest star from the Sun is
Proxima Centauri, which is located 4.25 light-years (1.30 pc) away in the southern constellation of
Centaurus[5]. Stars are formed in Molecular Cloud through various mechanical processes, including
gravitational collapse and contraction of interstellar matter. They reach hydrostatic equilibrium after
these mechanical processes as Proto-Star stage and then evolve into the main sequence after igniting
the hydrogen fusion in the core. A star the size of our Sun takes as long as 50 million years to evolve
from the beginning of the collapse to Main Sequence. Our Sun will stay on the main sequence for
approximately 10 billion years fusing hydrogen to helium in the core providing the energy outflow
and pressure that keep it from collapsing under its own weight.

Main Sequence stars span a wide range of luminosities and surface temperatures and can be
classified according to those characteristics. The smallest main sequence stars, known as red dwarfs,
contain as little as 10% the mass of the Sun and emit only 0.01% as much energy, glowing faintly
at temperatures around 3000K. Red dwarfs have a life span of tens of billions of years and are by
far the most numerous stars in the Universe. On the other hand, hypergiants, the most massive
main-sequence stars, have a life span of only a few million years and are extremely rare in today’s
Universe. The entire Milky Way galaxy contains only a handful of hypergiants [8]. They are
hundreds of times more massive than the Sun, have surface temperatures of more than 30,000 K,
and emit hundreds of thousands of times more energy than the Sun. In general, all evolutionary
stages are relatively faster in stars of high mass, and slower in those of low mass [12]. In order to
understand how stars evolve in the Main Sequence, we need to know the interior environment of
stars. However, we are not able to directly probe the interiors of stars. Thus, modeling the interior
parameters (such as mass, luminosity, temperature, and density) whose exterior values match the
observational constraints is a crucial method to describe the internal structure in detail and make
predictions about the future evolution of the star.
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In this paper, we describe a homogeneous quasi-static stellar structure model for a 2.75M⊙ Main
Sequence Star (labeled Star∗) using the four basic first-order differential equations: two represent
how matter and pressure vary with radius; two represent how temperature and luminosity vary
with radius. The detailed description of the model for the interior structure given the star’s surface
condition, as well as the estimation for the fusion reaction status in the core, are presented in Chapter
2. The comparisons of the model to a real star with the same mass are discussed in Chapter 2.3.



2. Model Description

2.1 Surface

In this section, we will discuss the surface appearance and the spectral type of Star∗. The surface
conditions for the star∗ comparing to that of a 1.00M⊙ star (labeled star1) are shown in the table
2.1. where M⊙ = 1.99 ·1033(g) is the mass of the Sun.

2.1.1 Luminosity, Effective Temperature, and Magnitude

A star in thermal equilibrium is approximately a blackbody that absorbs all electromagnetic radiation
and emits radiation whose spectrum depends on its temperature. The effective temperature Te f f of a
star is defined as the temperature needed for a blackbody with the same radius R as the star to have
the same luminosity L[10]. The Planck distribution function that describes the spectrum of radiation

Table 2.1: The surface Condition of the model for star∗ and star1. Mtot , Rtot , Ltot , and Te f f are the
mass, radius, luminosity, and effective temperature of the stars. X is the mass ratio of Hydrogen
atoms. Y is the mass ratio of Helium atoms. Z is the mass ratio of the Metals. M⊙ = 1.99 ·1033(g),
R⊙ = 6.96 ·1010(cm) , and L⊙ = 3.846 ·1033(ergs/s) are parameters for the Sun.

Parameters star∗ star1

M∗ (g) 2.75M⊙ 1.00M⊙
R∗ (cm) 1.51R⊙ 1.02R⊙

L∗ (ergs/s) 83.14L⊙ 0.86L⊙
Te f f (K) 14170.8 5500.2

X 0.700 0.700
Y 0.292 0.292
Z 0.008 0.008
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Figure 2.1: The blackbody radiation. Credit: [11]

for a blackbody is given by:

B(λ ,T ) =
2hc2

λ 5e
hc

λkT −1
(2.1)

, where k is the Boltzmann constant, h is the Planck constant, and c is the speed of light in the
medium. Figure 2.1 shows the plots of spectral radiation in terms of wavelength for three different
temperature values. Two laws can be derived from the Planck distribution function. One is Wien’s
law that describes the maximum wavelength emitted by a blackbody, at which the function 2.1 is at
its maximum:

λmax =
0.29Kcm

T
(2.2)

It explains that the hotter stars are blue and coolers ones are red. Using Wien’s law, we can estimate
that the maximum wavelength emits by Star∗ and Star1 are 205nm (Ultraviolet) and 527nm (Green-
yellow Light). Star∗ appears blueish while Star1 appears yellowish. The other law that can be
derived is Stefan-Boltzmann Law, which gives the flux F (the total power output per unit area
ergs/s/cm2) by integrating the Planck distribution 2.1 with all wavelength:

F = σT 4 (σ = 5.67×10−5ergs−1cm−2K−4) (2.3)

Thus the luminosity (the total power output per second ergs/s) can be written as:

L = 4πR2
σT 4 (2.4)

From the table, we see that Star∗ is 2.58 times hotter and 1.48 times larger than Star1, indicating
that the Star∗ should be 2.584 ∗1.482 = 96.56 times more luminous than Star1, in agreement with
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Figure 2.2: The optical spectral characteristics change with Te f f . Credit: [9]

the data given in the table. It can also be inferred from the equation 2.4 that a star with a higher
temperature emits more energy at all wavelengths than a cooler one. If we put them in the night
sky at the same distance from us, Star∗ will be much brighter than Star1. In astronomy, we use
magnitude to measure the brightness of an object[4]. Apparent magnitude (m) depends on an object’s
intrinsic luminosity and its distance from the Earth, while absolute magnitude (Mm) describes its
intrinsic luminosity and is equal to apparent magnitude if the object were placed on 10 parsecs from
the Earth. The relationship of the magnitude of two stars is given by the formula:

m1 −m2 = 2.5log(
F2

F1
) (2.5)

F1 and F2 are the total power output observed on the Earth Fobs at a distance d from the stars:

Fobs =
L

4πd2 (2.6)

The equation (2.5) is the modern definition of magnitudes whose difference is 5, corresponding to a
flux ratio of 100. The lower the magnitude, the higher the flux. By substituting equation (2.6) in
equation (2.5) and setting the distance of the second object to be 10 parsecs with the same luminosity,
we can show that the difference between the apparent magnitude and the absolute magnitude of a
star is:

m−M = 5log(
d
10

) (2.7)

From equation (2.5) and equation (2.6), it can be easily derived that difference of the absolute
magnitude of two stars is:

M1 −M2 = 2.5log(
L2

L1
) (2.8)
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Figure 2.3: The approximate line intensity as a function of Te f f . Credit: [9]

Knowing that the absolute magnitude of Star1 is 4.75m, using this equation, we can derive that the
absolute magnitude of Star∗ is −0.21m.

2.1.2 Spectral Classification

The primary cause of differences in stellar spectra is the effective temperatures that influence two
processes: excitation and unionization of atoms described by Boltzmann equation and Saha Equation.
Boltzmann equation gives the ratio of the number density of two energy-levels of a given ion in gas
at temperature T:

Nb

Na
=

gb

ga
e−(Eb−Ea)/(kT ) (2.9)

, where gn = 2n2is the number multiplicity of the level, E is the energy of the level. From this
equation, we see that the population of the higher energy level atoms is larger for a hotter star. Take
hydrogen lines as an example. The transition lines from the n = 1 level to a higher level are found in
the Ultraviolet part of the spectrum, called the Lyman lines (Lα ,Lβ ,Lγ ,etc.). From the n = 2 level
to higher are called the Balmer series (Hα ,Hβ ,Hγ , etc.) in the Visible part of the spectrum. For a
cool star, almost all of the hydrogen atoms are in their ground state, and the Balmer lines are very
weak, as well as Lyman lines, since not many photons have energy high enough for the atoms to emit
Ultraviolet. For hotter stars (Te f f ∼ 10000K), the population of hydrogen atoms in the n = 2 level is
very large, and their Blamer lines are intense. Figure 2.2 demonstrate this trend for hydrogen lines.

Saha equation gives the ratio of the atoms’ number density of two adjacent ionization states:

Ni+1

Ni
=

2kT Zi+1

PeZi
∗
(

2πmekT
h2

) 3
2

e−χi/kT (2.10)
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Figure 2.4: Ionization energy for different elements Credit: [2]

, where ne, Z, and χ are number of electrons, partition functions, and ionization potential (χ = 13.6
for hydrogen atoms). The Boltzmann and Saha equations describe two contributors that explain the
trend of spectral lines for all the different elements in figure 2.3. The portion of neutral hydrogen
found in energy level n = 2 maximized at a temperature around 10000K. For lower temperatures, the
population of n = 2 level among neutral hydrogen atoms is smaller. While for higher temperatures,
the population of neutral hydrogen atoms decreases. Thus the combination of the two processes
(excitation and ionization) contributes to the concave down curves of the line strength for all the
different elements. The position of the curve’s maximum, however, depends on the ionization energy
of different elements shown in figure 2.4. The larger the ionization energy of an atom, the hotter the
curve’s maximum will be. This explains that, for example, FeII lines are strong in cooler stars while
HeII lines are strong in hotter stars.

The stars are classified into different spectral types: O,B,A,F,G,K,M going from hotter to
cooler effective temperature. Figure 2.3 shows the intensity of spectral lines for different elements
as a function of temperature. From this figure, we can tell that Star∗ is approximately a B6 star,
whose Hydrogen lines are strongest in its optical spectrum. Assume that the Star∗ has the same
composition as the Sun’s (X = 0.735, Y = 0.248, Z = 0.017), Star∗ will have strong Blamer lines and
He lines. The position of Star∗ determined by its temperature in the H-R diagram is shown in the
figure 2.5. For main sequence stars, the masses are lower, moving from the upper left to the lower
right in the HR diagram. The graph on the right in the figure 2.5 shows the spectral type of Star∗

determined by its mass, which is approximately an A2 star. The results are quite different from that is
determined by its temperature. The temperature of real main-sequence stars with mass M = 2.75M⊙
should have been lower than the given data in table 2.1 or the mass of the real main-sequence stars
with temperature T = 14170.8 should have been larger according to [3].

The massive main sequence stars have higher surface temperatures and thus emit more power
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B6 Star* G5 Sun

M = 2.75M⊙

A2 Star*

Figure 2.5: H-R diagram showing the position of Star∗. The graph on the left shows the spectral
type determined by the temperature. The graph on the right shows the spectral type determined by
the mass. Credit: [12]

than low-mass stars with lower surface temperatures. Hence, more massive stars will have a
shorter lifespan in the main sequence because the energy generation from the nuclear reaction that
consumed hydrogen in the core is at a higher rate. The time for stars to stay in the main sequence is
approximately:

tms = 1010
(

M
M⊙

)(
L

L⊙

)−1

yr (2.11)

This indicates that Star∗ will stay on the main sequence for 1.82×1010 years.

2.2 Interior: Structure and Fusion
In this section, we will model the parameters (mass, pressure, temperature, and luminosity) change
inside the Star∗ and discuss the fusion reaction environment in the central core.

2.2.1 Modelling Parameters Change with Radius
We assume the star is spherically symmetric. By solving the four basic equations, commonly called
the equation of stellar structure, the interior parameters of the stars in terms of distance from the
center can be determined given the surface condition. In this section, we will discuss these four
equations and present the model results for the parameters of Star∗.
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Hydrostatic Equilibrium Equation
In a stable star, the pressure at every internal point must counterbalance the gravitational force of
the stellar layer above that point. Assume a mass element of thickness dr and area dA at a distance
r = R/R∗ (normalized radius) from the center of the star. The mass of the element is ρ(r)dAdr, the
upward pressure is P(r), the downward pressure is P(r)+dP. Thus the total force act on it is:

P(r)dA− (P(r)+dP)dA−ρ(r)dAdrg(r) = 0 (2.12)

, where g(r) = GM(r)
r2 is the gravitational acceleration. This equation can be simplified to obtain the

hydrostatic equilibrium equation:

dP(r)
dr

=−GM(r)ρ(r)
r2 (2.13)

Mass Conservation Equation
The hydrostatic equilibrium equation depends on mass at radius r. To solve the equation, we need to
know the mass distribution inside the star. Consider a shell of thickness dr at radius r. The mass of
this shell is:

dM(r) = ρ(r)dV = ρ(r)4πr2dr (2.14)

This can be simplified to obtain the equation of mass conservation:

dM(r)
dr

= 4πr2
ρ(r) (2.15)

Radiative Energy Transport Equation
We assume that all of the energy is transported by the radiation process. The rate of energy is
supplied to a star as a whole, and at each point within it must equal the energy loss by radiation. This
balance of heat gain and heat loss is called the Thermal Equilibrium. The radiation can be described
by Planck Law in equation 2.1. The total power output per unit area is given by the Stefan-Boltzmann
Law in equation 2.3. The temperature gradient can be derived using the two Law: (detail derivation
can be seen in the sections 3.8 and 5.2 of the book [10])

dT (r)
dr

=−3κ(r)ρ(r)L(r)
64σT 3πr2 (2.16)

, where κ(r) is the Opacity function of the radius r.

Energy Conservation Equation
The source of energy for a stable star is solely thermonuclear fusion. Thus the total luminosity
generated inside a spherical shell with thickness dr at radius r must equal the energy generation rate
of the nuclear fusion from that shell. Assume that we are given the nuclear production rate per unit
mass ε(r), the energy generated in the shell is:

dL(r) = ε(r)dM(r) = ε(r)4πr2
ρ(r) (2.17)

This can be simplified to obtain the energy conservation equation:

dL(r)
dr

= 4πr2
ρ(r)ε(r) (2.18)
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Figure 2.6: Fitting curves for Density (ρ) and Energy Generation Rate (ε)

In conclusion, the four basic equations and other ingredients needed to calculate the stellar model
is summarized by:

• dP(r)
dr

=−GM(r)ρ(r)
r2 • dM(r)

dr
= 4πr2

ρ(r)

• dT (r)
dr

=−3κ(r)ρ(r)L(r)
64σT 3πr2 • dL(r)

dr
= 4πr2

ρ(r)ε(r)

Provided Ingredients : κ(r); ε(r); ρ(r)

BoundaryConditions :

L(r → 0) = 0 L(r → 1) = Ltot M(r → 0) = 0 M(r → 1) = Mtot

P(r → 1) = 0 T (r → 1) = Te f f

(2.19)

In this paper, we are provided the data for all the parameters inside the Star∗. In reality, we need
to use the formula for ρ(r), κ(r), and ε(r) to solve the four basic equations. From the data given for
these three ingredients, we can make a hypothesis that the function of ρ(r), ε(r) and κ(r) can be
written in the form:

Hypothesis f or ρ and ε =
a

b+ cedr (2.19)
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Figure 2.7: Fitting curves for Opacity (κ)

And because the Opacity should be inverse proportional to the Density:

Hypothesis f or κ = xeyr + z (2.20)

, where a,b,c,d,x,y,z are constants that needed to fit with the data. By using the non-linear least
squares to fit the hypothesis functions with the data, we found the equations:

ρ(r) =
253.71

5.11+0.34e12.71r (2.21)

ε(r) =
6351.56

2.71+0.29e36.74r (2.22)

The performance of the fitting curve is shown in figure 2.6. However, for the Opacity, we haven’t
found a perfect fit. The reason may due to that the hypothesis does not match the real function well.
Nevertheless, the best fit for this hypothesis is:

κ(r) = 2.84 ·10−14e33.87r +1.71 (2.23)

The fitting curve for Opacity function is shown in figure 2.7. In reality, we need to use these three
functions as well as the boundary conditions to solve the four differential equations. As for simplicity,
the data of pressure, mass, temperature, and luminosity of Star∗ are given. We directly plot them as a
function of normalized radius in the figure 2.8. We define the Core region to be 99% of the luminosity
produced. From the data, we see that the Core region is at Rcore = 0.27Rtot , with volume (Vcore =
9.70×1031cm3 = 1.99%×Vtot) and mass (Mcore = 2.53×1030kg = 1.27M⊙ = 46.18%Mtot). The
convective zone has dlnP/dlnT ≤ 2.5. In the figure 2.8, we can see that 63% of the core is convective.
The interior mass of Star∗ increase slower as radius getting larger, indicating that the density is
dropping. The central core Temperature and Pressure are 2.45×107K and 1.50×1017dynes/cm2

and decrease rapidly out to the surface.
We assume that the composition of the Star∗ is homogeneous. Using the given data for the core

density ρcore = 45.7g/cm3, we can calculate the core Pressure by the formula:

P =
N
V

kT (k = 1.38×10−16erg/K) (2.24)
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Figure 2.8: The Stellar Structure for Star∗

, where N
V is the total number of particles per unit volume. Assuming the average atomic weight of

the metals is 16, the total number of particles is thus:

N = 2X +3/4Y +1/2Z (2.25)

And thus,

N
V

= (2X +3/4Y +1/2Z)
ρ

mH
(2.26)

, where mH = 1.67×10−27g is the mass of hydrogen atoms. Using the core condition for density
ρcore and abundance values X = 0.700,Y = 0.292,Z = 0.008, we can calculate the core pressure
Pcore = 1.5×1017dynes/cm2, which is in agreement with the data given in the model.

2.2.2 Fusion

Main sequence stars burn hydrogen to helium in their core through nuclear reactions. Two sets
of reactions are involved: Proton-Proton (PP) Chains and CNO cycles. The PP Chains are the
main energy generation for main-sequence stars with mass smaller than 1.5M·, while CNO cycles
dominate for more massive stars [10].

The Proton-Proton Chains consists of a series of thermonuclear reactions: PP-I, PP-II, and PP-III,
by which hydrogen is transformed into helium. Among all the three PP chains, PP-I has chances of
69% to happen in the core, which is when 3He nucleus fuse with another 3He nucleus to produce
4He nucleus. PP-II and PP-III chains have chances of 31% to happen when 3He nucleus reacts with
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Figure 2.9: CNO cycles. Credit: [10]

a 4He nucleus to produce 7Be nucleus. 7Be nucleus will then react with a free electron 99.7% of the
time leading to PP-II chain, or react with a proton 0.3% of the time leading to PP-III. The PP chains
reaction are summarized by:

1H +1 H →2 H + e++ν

2H +1 H →3 He+ γ

PP− I (69%) : 3He+3 He →4 He+21H

(31%) : 3He+4 He →7 Be+ γ

PP− II(31%×99.7%) : 7Be+ e− →7 Li+νe
7Li+1 H → 24He

PP− III(31%×0.3%) : 7Be+1 H →8 B+ γ

8B → 24He+ e++νe

(2.27)

The energy generation rate of PP-Chain εpp(ergs/g/s)is given by:[12].

εpp =CppρX2
(

106

T

) 2
3

e−33.8(106/T )
1
3

(Cpp = 2.5×106) (2.28)

Using the core condition for Star∗, ρcore = 45.7g/cm3, X = 0.7, Tcore = 2.45× 107K, we can
calculate the energy release rate of PP chain reaction εpp∗ = 58.6 ergs/g/s

If we assume that 100% of the Surface Luminosity is generated by the PPI chain. The number of
PPI chain reaction per second would be:

n = Ltot/EppI (2.29)

, where EppI = 26.7MeV is the energy released per reaction. We obtain that n = 7.47×1039(s−1).
Each reaction consumes four hydrogen atoms. Hence, the total number of hydrogen consumed



2.3 Compare with A Real Star: Thuban A 17

Table 2.2: The surface Condition of Thuban A comparing with Srat∗ [7]
Parameters star∗ Thuban A

M∗ (g) 2.75M⊙ 2.80M⊙
R∗ (cm) 1.51R⊙ 3.40R⊙

L∗ (ergs/s) 83.14L⊙ 479L⊙
Te f f (K) 14170.8 10100

Mm -0.21 -1.20
Spectral Type B6 A0

per second is 4×n = 2.99×1040(s−1), corresponding to the mass of 4.99×1013(kg/s). The total
amount of hydrogen of the Star∗ is XMtot = 3.83×1030(kg). All of the hydrogen will be consumed
after 2.43×109 years. This is much shorter than the results obtained by equation 2.11, which was
1.82×1010 years. Hence, its impossible that the luminosity is produced solely by PPI chain.

CNO cycles is a series of nuclear reaction fusing proton with C, N, and O to produce Helium.
The critical temperature needed for CNO cycles is larger than PP Chains because C, N, and O nuclei
are highly charged. For massive stars (M > 1.5M⊙), the temperature is high enough so that the
CNO cycles dominate the energy generation. The CNO cycles are summarized in figure 2.9. The
energy generation rate of CNO cycles εCNO(ergs/g/s)is given by:[12].

εCNO =CCNOρXXCNO

(
106

T

) 2
3

e−152.3(106/T )
1
3 (CCNO = 9.5×1028 XCNO = 1/3Z) (2.30)

Similarly, using the core conditions, we obtain that εCNO = 1.62×104 ergs/g/s. The ratio of the
energy generation rate of PP Chains and CNO cycles is εCNO

εpp
= 276. The CNO cycles dominates for

Star∗.

2.3 Compare with A Real Star: Thuban A

Thuban is a single-lined spectroscopic binary system located in the constellation of Draco. A
relatively inconspicuous star in the night sky of the Northern Hemisphere, it is historically significant
as having been the north pole star from the 4th to 2nd-millennium BC[7]. The surface conditions of
Thuban A is shown in table 2.3. Thuban’s color is blue-white according to the spectral type of A0III,
but much more luminous than Star∗. This is inconsistent with the properties of a main-sequence star
if we put it on the H-R diagram. Thuban A has now ceased hydrogen fusion in its core and started
to expand, making it a white giant star [7], indicating that Thuban has already spent more than ten
billion years on the main sequence and just started to evolve to its next phase. Given good viewing
conditions, Thuban can be seen with naked eyes (m = 3.47m). Due to its location in relation to the
Big Dipper asterism of Ursa Major, Thuban can be easily spotted in the night sky. The two inner
stars of the ’dipper’, Phecda and Megrez, point to Thuban, 15 degrees of arc from Megrez.



3. Conclusion

In this paper, we have modeled a 2.75M⊙ main-sequence star. Its parameters data are in good
agreement with the theory. The only thing that is unclear is the spectral type. We have obtained
two different types for Star∗ determined by temperature and mass. The given surface condition
for Star∗ maybe not be strictly derived from a theory. The mass for the main-sequence star with a
temperature around 14000K should be higher than 2.75⊙. Also, the interior Opacity data cannot
fit very well with the hypothesis function. The Opacity data graph has some glitches. Thus, more
thorough investigation and more information on how the data were generated are needed to fully
evaluate the performance of our model.
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